istribution and Distributed Transaction
Management

l

H.
JUMP INTO 'IJHEE VING%JORL
OFDATA SEMA GEM#

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDETO STORING. MANAGING
AND ANALYZING BIG AND SMALL DATQ’

SNSave ONY
v NAHYIWAT

I1IN0YE NIANYA

Pri of Database| p c with the i 1
i on to u and apply the fundamental comtpts of Wy
databdse design‘and modeling, database systems; data storage, and the'evolving world
of data warehousmg, governance and more. Designed for those studying datal?se
for or science, this i
textbook has a well-| ba|anced tbeory practice focus and covers the essential tapics,
from d d: ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, anI down boxes that reveal deeper insights on key,
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the i b hroughout the text are included to
provide the practical tools to get started in database management.

2T L e

s S AN S

+

=
¥

L
o
=
rm
w
(=
-

KEY FEATURES INCLUDE:

= Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.
An online playground with diverse environments, including MySQL for querying;
MongoDB; Neod4j Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be §
reproduced on the book’s companion online playground. -
Case studies, review questi p and ises in every chapter.

Additional cases, problems and exercises in the appendix.

INIW3IVNVIN 3SVE

Online Resources
www.cambridge.org/

Instructor’s resources
M Solutions manual

M Code and data for examples CAMBRIDGE
UNIVERSITY PRESS
www.cambridge.org

9"781107"'186125">

ISBN 97
Cover illustration: ©Chen Hanquan / DigitalVision / Getty Images.
Cover design: Andrew Ward

www.pdbmbook o |

http://www.pdbmbook.com/

Introduction

Distributed Systems and Distributed Databases
Architectural Implications of Distributed Databases
Fragmentation, Allocation and Replication
Transparency

Distributed Query Processing

Distributed Transaction Management and
Concurrency Control

Eventual Consistency and BASE Transactions

Distributed Systems and Distributed Databases

Distributed computing system consists of several processing
units (nodes) with a certain level of autonomy, which are
interconnected by a network and which cooperatively
perform complex tasks

By dividing and distributing a complex problem into smaller,
more manageable units of work, the complexity becomes
manageable

Distributed database systems distribute data and data
retrieval functionality over multiple data sources and/or
locations

Goal is to provide an integrated view of the distributed data
and transparency

Distributed Systems and Distributed Databases

* Distributed database environment
— deliberate choice
— merger or acquisition
— consecutive investments in different technologies

e Distribution aspects
— performance
— local autonomy
— availability
— degree of transparency

— distributed query processing\transaction management\concurrency
control and recovery

Architectural Implications of Distributed Databases

 Shared memory architecture

— multiple interconnected processors that run the DBMS software
share the same central storage and secondary storage

 Shared disk architecture

— each processor has its own central storage but shares secondary
storage with other processors (using e.g. a SAN or NAS)

e Shared-nothing architecture
— each processor has its own central storage and hard disk units

— data sharing occurs through the processors communicating with
one another over the network

Architectural Implications of Distributed Databases

eron e e e
Interconnect]
— |

Interconnect
| |

Shared memory architecture Shared disk architecture

=

Interconnect

Shared nothing architecture

Architectural Implications of Distributed Databases

* Scalability can be achieved in 2 ways
— capacity of nodes can be increased (vertical scalability)
— more nodes can be added (horizontal scalability)

* Notes
— parallel databases

* focus on data distribution for performance
* intra-query versus inter-query parallelism

— federated databases

* nodes in a shared-nothing architecture each run an
independent DBMS instance with horizontal data
fragmentation

Fragmentation, Allocation and Replication

Fragmentation: partitioning of data into subsets (fragments) based on
performance, local autonomy and availability

Vertical fragmentation
— fragment consists of subset of columns of data
— global view with JOIN query
— useful if only some of a tuple’s attributes are relevant to a certain node

Horizontal fragmentation (Sharding)

— fragment consists of rows that satisfy a query predicate
— global view with UNION query

— common in NoSQL databases

Mixed fragmentation

— combines horizontal and vertical fragmentation
— global view with JOIN + UNION query

Fragmentation, Allocation and Replication

I_ L | L | L | —_— —_— L | L | L | —_— —_— L | L | L | -l
|
I CustomerID FirstName LastName I Country Year of birth Gender
' :
I 10023 Bart Baesens I Belgium 1975 M
| 10098 Charlotte Bobson | US.A. 1968 F
I 11
I 10233 Donald McDonald : U.K 1960 M
| 10299 Heiner Pilzner | Germany 1973 M
|
I 10351 Simonne Toutdroit ! France 1981 F
|
| 10359 Seppe Vanden Broucke I Belgium 1989 M
. 10544 Bridget Charlt U.K. 1992 F
I Horizontal I ridge arteen I
! fragmentation I 11213 Angela Kissinger | USA 1969 F |
l |
I I 11349 Henry Dumortier | France 1987 M I
| I
|
| I 11821 Wilfried Lemahieu I Belgium 1970 M |
12111 Tim Pope U.K. 1956 M
12194 Naomi Leary US.A. 1999 F

Vertical fragmentation

s o o (e = -

Fragmentation, Allocation and Replication

CustomeriD FirstName LastName
10023 Bart Baesens
10098 Charlotte Bobson
10233 Donald McDonald
10299 Heiner Pilzner
10351 Simonne Toutdroit
10359 Seppe Vanden Broucke
10544 Bridget Charlton
11213 Angela Kissinger
11349 Henry Dumortier
11821 Wilfried Lemahieu
12111 Tim Pope
12194 Naomi Leary

CustomerlD Country Year of birth Gender
10023 Belgium 1975 M
10098 US.A. 1968 F
10233 U.K. 1960 M
10299 Germany 1973 M
10351 France 1981 F
10359 Belgium 1989 M
10544 U.K. 1992 F
11213 US.A. 1969 F
11349 France 1987 M
11821 Belgium 1970 M
12111 U.K. 1956 M
12194 US.A 1999 F

10

Fragmentation, Allocation and Replication

CustomerID FirstName LastName Country Year of birth Gender
10023 Bart Baesens Belgium 1975 M
10359 Seppe Vanden Broucke Belgium 1989 M
11821 Wilfried Lemahieu Belgium 1970 M
10351 Simonne Toutdroit France 1981 F
11349 Henry Dumortier France 1987 M
CustomerID FirstName LastName Country Year of birth Gender
10299 Heiner Pilzner Germany 1973 M
CustomerID FirstName LastName Country Year of birth Gender
10544 Bridget Charlton U.K. 1992 F
10233 Donald McDonald U.K. 1960 M
12111 Tim Pope U.K. 1956 M
CustomerID FirstName LastName Country Year of birth Gender
11213 Angela Kissinger US.A. 1969 F
10098 Charlotte Bobson US.A 1968 F
12194 Naomi Leary U.S.A. 1999 F

11

Fragmentation, Allocation and Replication

CustomerID FirstName LastName
10023 Bart Baesens
10359 Seppe Vanden Broucke
11821 Wilfried Lemahieu
10351 Simonne Toutdroit
11349 Henry Dumortier
CustomeriD FirstName LastName
10299 Heiner Pilzner
CustomerlD FirstName LastName
10544 Bridget Charlton
10233 Donald McDonald
12111 Tim Pope
CustomerlD FirstName LastName
11213 Angela Kissinger
10098 Charlotte Bobson
12194 Naomi Leary

CustomerID Country Year of birth Gender
10023 Belgium 1975 M
10098 U.S.A. 1968 F
10233 U.K. 1960 M
10299 Germany 1973 M
10351 France 1981 F
10359 Belgium 1989 M
10544 U.K. 1992 F
11213 U.S.A. 1969 F
11349 France 1987 M
11821 Belgium 1970 M
12111 U.K. 1956 M
12194 U.S.A. 1999 F

12

Fragmentation, Allocation and Replication

e Derived fragmentation
— fragmentation criteria belong to another table

e Data replication occurs when the fragments overlap, or if
there are multiple identical fragments allocated to
different nodes so as to ensure

— local autonomy
— performance and scalability
— reliability and availability

* Note: replication induces additional overhead and
complexity to keep replicas consistent!

Fragmentation, Allocation and Replication

* Also metadata can be distributed and replicated
* Local versus global catalog

Transparency

* Transparency: application and users confronted
with only a single logical database and are insulated
from the complexities of the distribution

— extension to logical and physical data independence
* Location transparency

— users don’t know where required data resides
* Fragmentation transparency

— users can execute global queries, without being
concerned with the fact that distributed fragments will
be involved, and need to be combined

Transparency

* Replication transparency

— different replicas will be kept consistent and updates to
one replica will be propagated transparently to others

* Access transparency

— distributed database can be accessed and queried
uniformly, regardless of different database systems and
APIs

* Transaction transparency

— DBMS transparently performs distributed transactions as
if they were transactions in a standalone system

Distributed Query Processing

* Optimizer should not only consider the
elements of a standalone setting but also
properties of respective fragments,
communication costs, and location of the
data in the network

* Also metadata may be distributed

* Both global (across all nodes) and local
(within a single node) query optimization are
needed

Distributed Query Processing

query
decomposition query in relational algebra format

data
localisation fragment query

v

global query
optimization globally optimized fragment query

v
local query

optimization locally optimized fragment subqueries

Distributed Query Processing

Decomposition
— query first analysed for correctness (syntax, etc.)

— query represented in relational algebra and transformed into
canonical form

Data localization
— transformation of query into a fragment query
— database fragments and locations are identified

Global query optimization
— cost model is used to evaluate different global strategies
Local query optimization

— optimal strategy for local execution

Distributed Query Processing

SUPPLIER (SUPNR, SUPNAME, SUPADDRESS, SUPSTATUS)
PURCHASEORDER (PONR, PODATE, SUPPLIER)
PRODUCT (PNR, PNAME, PCOLOR, PWEIGHT, WAREHOUSE, STOCK)

Location 1:

SUPPLIER table
SUPNR: 4 bytes
SUPNAME: 30 bytes
Entire row: 84 bytes
Number of rows: 1000

CPU

Location 2:

PURCHASEORDER table
PONR: 6 bytes
SUPPLIER: 4 bytes
Entire row: 16 bytes
Number of rows: 3000
On average, there are 200 suppliers
with outstanding purchase orders

CPU

Location 3:

Query:

SELECT PONR, SUPNAME

FROM PURCHASEORDER PO, SUPPLIER S
WHERE PO.SUPPLIER = S.SUPNR

CPU

Network

Distributed Query Processing

* Strategy 1

— all tables are copied to location 3, which is also the location
where all querying is performed

— data transport amounts to (1000 x 84) + (3000 x 16) bytes =
132,000 bytes
* Strategy 2

— SUPPLIER table is copied to location 2, where it is joined with
the PURCHASEORDER table

— query result is then sent to location 3

— data transport amounts to (1000 x 84) + (3000 x (6 + 30)) bytes =
192,000 bytes

Distributed Query Processing

* Strategy 3

— PURCHASEORDER table is copied to location 1, where it
is joined with the SUPPLIER table

— query result is sent to location 3

— data transport amounts to (3000 x 16) bytes + (3000 x
(6 + 30)) bytes = 156.000 bytes

Distributed Query Processing

* Strategy 4
— use semi-join technique

— in location 2, a projection operation is executed, to yield all
numbers of suppliers associated with a purchase order (say around
200 supplier numbers)

— numbers are copied to location 1, where a join operation is
executed to combine supplier numbers with names

— intermediate result is copied to location 2 for further processing
— final result is sent to location 3

— data transport amounts to only (200 x 4) + (200 x (4 + 30)) + (3000 x
(6 + 30)) bytes = 115.600 bytes

— Lowest network traffic but higher processing cost!

Distributed Transaction Management and
Concurrency Control

Tightly versus Loosely Coupled Setting
Primary Site and Primary Copy 2PL
Distributed 2PL

Two-Phase Commit Protocol (2PC)

Optimistic Concurrency and Loosely Coupled
Systems

Compensation-Based Transaction Models

Tightly versus Loosely Coupled Setting

* Global transaction coordinator versus local participants
* Tightly coupled setting

— interdependence between participants and central control are substantial
— distributed transaction required to have ‘ACID’ properties
— typically paired with synchronous communication

e Loosely coupled setting
— mobile devices, web services and programming models such as .NET
— interactions based on asynchronous messaging and locally replicated data
— cached local updates only synchronized periodically with global system
— often apply some form of optimistic concurrency

Primary Site and Primary Copy 2PL

* Primary site 2PL
— centralized 2PL protocol in distributed environment
— single lock manager applies 2PL rules
— lock manager informs coordinator when locks can be granted

— participant that has completed processing will notify
coordinator who, then instructs central lock manager to
release locks

— biggest advantage is relative simplicity (no global deadlocks!)

— lock manager may become bottleneck + no location autonomy
and limited reliability/availability

Primary Site and Primary Copy 2PL

* Primary Copy 2PL

ock managers implemented at different
ocations and maintain locking information

nertaining to a predefined subset of the data

—requests for granting and releasing locks

directed to the lock manager responsible for
that subset

—impact of particular location going down will be

less severe than with primary site 2PL

Distributed 2PL

* Every site has its own lock manager, which manages
all locking data pertaining to the fragments stored on

that site
* For global transactions that involve updates at n sites

— n locking requests
— n confirmations about whether the locks are granted or not

— n notifications of local operations having completed
— n requests to release the locks
* Location autonomy is respected but deadlocks may

OCCUr

Distributed 2PL

* |f database has no replicated data, applying
2PL protocol guarantees serializability

—serializable global schedule is union of local
serializable schedules

* |n case of replication, 2PL protocol must be
extended

Distributed 2PL

Location 1 (L;i)

Location 2 (L;)

time T1.1 T2.1 Ti.2 T2.z

t, begin transaction begin transaction

ts begin transaction | x-lock(amount,) x-lock(amount.) begin transaction
ts x-lock(amount,) read(amount,) read(amount,) x- lock(amount,)
ts wait amount,= amount, x 2 amount,= amount,-56 wait

ts wait write(amounty) write(amounty) wait

ts wait commit commit wait

t; wait unlock(amount,) unlock(amount,) wait

ts read(amounty) read(amounty)

ts amount,= amount,-5@ amount,= amount, x2
tie write(amount,) write(amount,)

tin commit commit

ti2 unlock(amount,) unlock(amount,)

30

Distributed 2PL

* 2PL can give rise to global deadlocks

—can not be detected by local lock managers

* Deadlock detection in distributed 2PL
requires the construction of a global
wait-for graph
—schedule is only deadlock free if not only

the local graphs, but also the global graph
contains no cycles

Distributed 2PL

Transaction 1 (T,) Transaction 2 (T,)
begin transaction begin transaction
x-lock(account,) x-lock(account,)
read(account,) read(account,)
account, = account,— 50 account, = account, — 30
write(account,) write(account,)
x-lock(account,) x-lock(account,)
read(account,) read(account,)
account, = account, + 50 account, = account, + 30
write(account,) write(account,)
commit commit
unlock(account,, account,) unlock(account,, account,)

Location 1 (L;)

Account, is stored on Location 1
Account, is stored on Location 2

Location 2 (L,)

Time Tia Tz Ty
ty begin transaction
t, x-lock(account,) begin transaction
1, read(account,) x-lock(account,)
t, accountx = account, — 50 read(account,)
15 write(account,) account, = account, — 30
t5 write(account,) x-lock(account,)
t; x-lock(account,) wait
tg wait wait
Local wait for graph for L, Local wait for graph for L, Global wait for graph

32

Distributed 2PL

 Example approach to detect global deadlocks
— central site maintains global wait-for graph

—all local lock managers periodically inform
central site of changes in their local wait-for
graphs

—if one or more cycles are detected, local lock
managers will be informed accordingly and
victim selection will determine which
transaction(s) to abort and roll back

Two-Phase Commit Protocol (2PC)

* Global transaction only attains ‘committed’ or
‘aborted’ state if all subtransactions have attained

same state

 Two-Phase Commit (2PC) Protocol supports
transaction recovery in distributed environment

* Global transaction completion involves 2 steps

— voting phase: all participants ‘vote’ about transaction
outcome

— decision phase: transaction coordinator makes final
decision about outcome

Two-Phase Commit Protocol (2PC

Phase 1

Phase2 <

Start_transaction

Participant

Participant

- >
Perform_operations ...
Prepare
p » 5
Vote ‘commit’ or ‘abort’
E Vote ‘commit’ or ‘abort’
Count votes
Issue global commit
or global abort .

A

Confirmation

A\ J

Perform local commit
or local abort

0,

Confirmation

Register end_transaction

O

Perform local commit
or local abort

O

Two-Phase Commit Protocol (2PC)

* 2PC protocol supplemented by

—termination protocol: describes how to
react to a timeout

—recovery protocol: describes how faulty
site should correctly resume operation
after malfunction

Optimistic Concurrency and Loosely
Coupled Systems

* Optimistic protocols resolve conflict before
transaction commit, typically with abort and
rollback of conflicting transaction

— advantageous in distributed setting

* Tightly coupled distributed systems often apply
pessimistic concurrency protocol

— conflicting operations of other transactions postponed
until locks released

— transactions are typically sufficiently short-lived so as
not to hold any locks for longer periods

Optimistic Concurrency and Loosely
Coupled Systems

* Loosely coupled distributed systems often apply
optimistic concurrency protocol

— locks only held during brief period when database connection is
open, to exchange data between the database and, e.g. an
ADO.NET DataSet

 Example downside of optimistic concurrency

— suppose application A, reads data from database into a DataSet
and then closes the database connection

— data in the disconnected dataset is updated locally
— new connection is opened to propagate to database

— no guarantee that data in the database was not altered by other
application A, !

Optimistic Concurrency and Loosely
Coupled Systems

* Detecting conflicting updates in optimistic concurrency
setting

— Timestamps

* ‘timestamp’ column added to any table that is open to
disconnected access indicating time of most recent update

 if A, retrieves rows and then disconnects, timestamp column is
copied.

* when application attempts to propagate its updates to the
database, the timestamp associated with updated row is
compared to timestamp of corresponding row in database

* if both timestamps don’t match, the update by A, will be refused.
Otherwise, updated row can be propagated safely and new
timestamp value is stored.

Optimistic Concurrency and Loosely
Coupled Systems

* Detecting conflicting updates in an optimistic
concurrency setting (contd.)

— store 2 versions of each row in the disconnected entity:
‘current’ version and ‘original’ version
e default in ADO.NET DataSet
 ‘original’ version contains values read from the database
* ‘current’ version contains values affected by local updates

* when updates are propagated to the database, for each locally
updated row, the ‘original’ values are compared to values of the
corresponding row in the database. If the values are identical,
the row is updated, otherwise, update is rejected.

Optimistic Concurrency and Loosely
Coupled Systems

UPDATE MYTABLE
SET columnl = @currentValuel,

column2 = @currentValue2,

column3 = @currentValue3
WHERE columnl = @originalValuel
AND column2 = @originalValue?2

AND column3 = @originalValue3

Compensation-Based Transaction Models

* Loosely coupled settings (e.g., web service
environments) characterized by long running
transactions

 Example: travel agent web service

— pessimistic concurrency protocol not advised
because locks might be held too long

— optimistic concurrency not advised because
coordinated rollback across participants
infeasible

Compensation-Based Transaction Models

Travel agent

bookTrip()

F

Transaction aborted

bookHotel()

bookFlight(),)

prepare

prepare

OK

Not OK

abort | Aborted

abort

»| Aborted

p|ay 1. $207

Compensation-Based Transaction Models

 Compensation-based transaction model

— undo local effects of transaction if global long running
transaction is unsuccessful

— abandons ‘atomicity’ property of long running transaction

— local subtransactions within single participant remain
atomic and are committed asap, without waiting for global
commit notification

— requires each transaction participant to define its
transaction sensitive operations in pairs, with the second
operation specifying a new local transaction that cancels
out the effects of the first (‘compensation’)

Compensation-Based Transaction Models

bookTrip().

Y =24 S3207

bookHotel() » Commited [£

PI2y =4E S3207

bookFIight()_r_ Aborted }

_callBackBookHotel("OK")

callBackBookFlight("Not OK")

CompensateBookHotel() }

P|2Y =24B S}207

callBackBookTrip("Not OK")

-

45

Compensation-Based Transaction Models

 Compensation-based transaction model (contd.)

— requires for each transaction sensitive operation O,, a
compensating, hand-coded operation C,

— if global transaction that invoked O, is aborted, C; will
be invoked by transaction coordinator

— default transaction mechanism of, e.g. WS-BPEL, which
define long running processes as orchestrations of
individual web services

— does not guarantee transaction isolation

Compensation-Based Transaction Models

* Closing thoughts

e pessimistic concurrency preferable if many concurrent
updates to same data subsets are expected, and data
consistency is important

 optimistic concurrency and/or compensation if
concurrent access to same data subsets is limited or if
read operations outnumber write operations

* trade-off between consistency and performance also
pertinent to divide between RDBMSs and NoSQL
DBMSs

Eventual Consistency and BASE Transactions

Horizontal Fragmentation and Consistent Hashing
CAP Theorem
BASE Transactions

Multi-Version Concurrency Control and Vector
Clocks

Quorum-Based Consistency

Horizontal Fragmentation and Consistent Hashing

NoSQL databases apply horizontal fragmentation
(sharding)

Shards allocated to different nodes in cluster with
consistent hashing mechanism applied to data items’ key

Sharding usually entails replication and allows for
parallel access

NoSQL DBMSs approach linear horizontal scalability
Sharding and replication yields high availability

Not possible with traditional RDBMS and ACID
transactions

CAP Theorem

Distributed system has at most 2 of 3
oroperties

— Consistency: all nodes see same data, and same
versions of these data, at the same time

— Availability: every request receives a response
indicating success or failure

— Partition tolerance: system continues to work
even if nodes go down or are added

CAP Theorem

e Standalone system can provide both data
consistency and availability with ACID transactions

* Tightly coupled distributed DBMSs often sacrifice
availability for consistency and partition tolerance
* NoSQL DBMSs give up on consistency

— in big data settings, unavailability is costlier than
(temporary) data inconsistency

— overhead of locking has severe impact on performance

CAP Theorem

Critical Notes

— performance degradation induced by overhead of
mechanisms that enforce transactional consistency
under normal operation, even in absence of network
partitions is reason to abandon perpetual consistency

— availability and performance same concepts, with
unavailability an extreme case of high latency and low
performance

— real trade-off is between consistency and performance

BASE Transactions

* NoSQL DBMSs do not give up on consistency

e BASE transactions

— Basically Available: measures in place to guarantee
availability under all circumstances, if necessary at cost
of consistency

— Soft State: state may evolve, even without external
input, due to asynchronous propagation of updates

— Eventually consistent: database will become consistent
over time, but may not be consistent at any moment
and especially not at transaction commit

BASE Transactions

Write operations performed on one or a few replicas
of data item

Updates to other replicas propagated
asynchronously in background

Read operations performed on one or few replicas

If read of multiple replicas gives inconsistent results

— DBMS uses timestamps (e.g., ‘last write wins’) and
returns most recent version

— applications determines how conflicting replicas are
reconciled

Multi-Version Concurrency Control and Vector Clocks

 With BASE transactions, conflict resolution does not
necessarily happen at moment of writing data but
may be postponed until data is read

* Rather than postponing write operation, new
version of data item is created with updated value

 DBMS may contain multiple inconsistent versions of
a data item

— conflict resolution is postponed until data is retrieved

Multi-Version Concurrency Control and Vector Clocks

 MVCC (Multi-Version Concurrency Control) protocol
— read operation returns one or more versions of data item; conflicts
resolved by DBMS or application
— write operation creates new version of data item
— vector clocks used to discriminate between data item versions and
to trace their origin
— obsolete versions of data item garbage collected

* Vector clock consists of list of [node, counter] pairs
— node refers to node that handled write of that version
— counter denotes version number of writes by that node

* Entirety of vector clocks associated with versions of data item
represents lines of descendance of respective versions

Multi-Version Concurrency Control and Vector Clocks

* Read operation retrieves all conflicting versions of data
item, with the versions’ vector clocks

* Write operation creates new version of a data item with
corresponding vector clock

* |f all counters in a version’s vector clock are less-than-or-
equal-to all counters in another version’s clock, then the
first version is an ancestor of the second one and can
safely be garbage collected

— otherwise, both versions represent conflicting versions and
should be retained (may be reconciled later)

Multi-Version Concurrency Control and Vector Clocks

Client creates
new data item D

J First version D, is written by node N1
D; [(N1,1)]
l Second version D, is written by node N1

D, [(N1,2)]

Fourth version D,
stil descending from D,
. is written by node N3

Third version D;
is written by node N2
K

D [(N1,2),(N2,1)] D, [(N1,2), (N3, 1)]

results in new version Ds

Reconciliation of D; and D,
written by node N1

Ds [(NZ1,3),(N2,1), (N3, 1)]
58

Quorum-Based Consistency

* Administrator can position NoSQL DBMS on continuum

between high availability and permanent consistency using
guorum-based protocol

* Quorum based protocols enforce consistency using 3
parameters N, Rand W, with R<Nand W<N
— N represents number of nodes to which data item is replicated

— Ris minimum number of nodes that should respond before a read
operation can be considered as completed

— W is the minimum number of nodes that should receive updated
value before write operation can be considered as completed

Quorum-Based Consistency

* By manipulating R and W, administrator can decide on
trade-off between performance and consistency, but also
on trade-off between read and write performance

* Configuration with R+ W > N is guaranteed to provide at
least one up to date replica with each read operation

* Configurations with R + W < N have better read and/or
write performance, but it cannot be guaranteed that the
result set of each read operation will contain an up to
date replica

Quorum-Based

Consistency

N=3 Node 1
a)))
Write response time = 100 ms 4
R=1
w=1 @
b)

Write response time =300ms 4

=N ,4.
1 ;

d) Write response time = 200 ms .

A

sS=
Iy

Node 2

O

Node 3

O Read response time = 100 ms

" Result may be outdated

. Read response time = 100 ms

Result is always up to date

-
) \\\\
O Read response time = 300 ms

Result set always contains up to date version

\
- =¥

O Read response time = 200 ms

Result set always contains up to date version

N
o - 7__,_‘,'.'::3

61

Conclusions

Distributed Systems and Distributed Databases
Architectural Implications of Distributed Databases
Fragmentation, Allocation and Replication
Transparency

Distributed Query Processing

Distributed Transaction Management and
Concurrency Control

Eventual Consistency and BASE Transactions

More information?

- W
(! Ll { E

JUMP INTU 14HE E% _ VING‘IURL

e S .
N SN

OFDATABASE MA GEME»

Princigles of Database,
manqement information to

bdse design"and modeling, database systems; data storage, and the'evolving world
of data warehoising, governance and more. Designed for those studying datal
management for information management or computer science, this illustrates
textbook has a we" ba[anced theory practice focus and covers the essential tapics,
from blished ies up to recent trends like Big Data, NoSQL, and
analytics. On-going case studies, drill-down boxes that reveal deeper insights on key
topics, retention questions at the end of every section of a chapter, and connections
boxes that show the relationship b hroughout the text are included to
provide the practical tools to get started in database management.

with the

KEY FEATURES INCLUDE:
* Full-color illustrations throughout the text.

* Extensive coverage of important trending topics, including data warehousing, business
intelligence, data integration, data quality, data governance, Big Data and analytics.

An online playground with diverse environments, including MySQL for querying;
MongoDB; Neodj Cypher; and a tree structure visualization environment.

Hundreds of examples to illustrate and clarify the concepts discussed that can be
reproduced on the book’s companion online playground.

Case studies, review questions, problems and exercises in every chapter.

Additional cases, p: and it in the di

Online Resources
www.cambridge.org/

Instructor’s resources

M Solutions manual
M Code and data for examples

Cover illustration: @Chen Hanquan / DigitalVision / Getty lmages.
Cover design: Andrew Ward.

9"781107"186125

il)
1d and apply the fund: | col -

>

SN3S3 V8 ONY
T3IHYIWAT

I1IN0YE NIONYA

|

bl

<2
O
—
m
w
o)
M

INIWIIVNVIN 3SVE

.

WILFRIED LEMAHIEU
SEPPE VANDEN BROUCKE
BART BAESENS

PRINCIPLES OF
DATABASE

MANAGEMENT

THE PRACTICAL GUIDE TO STORING. MANAGING
AND ANALYZING BIG AND SMALL DAT&

www.pdbmbook.co

http://www.pdbmbook.com/

