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Introduction

• Distributed Systems and Distributed Databases

• Architectural Implications of Distributed Databases

• Fragmentation, Allocation and Replication

• Transparency

• Distributed Query Processing

• Distributed Transaction Management and 
Concurrency Control

• Eventual Consistency and BASE Transactions
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Distributed Systems and Distributed Databases

• Distributed computing system consists of several processing 
units (nodes) with a certain level of autonomy, which are 
interconnected by a network and which cooperatively 
perform complex tasks

• By dividing and distributing a complex problem into smaller, 
more manageable units of work, the complexity becomes 
manageable

• Distributed database systems distribute data and data 
retrieval functionality over multiple data sources and/or 
locations

• Goal is to provide an integrated view of the distributed data 
and transparency 3



Distributed Systems and Distributed Databases

• Distributed database environment

– deliberate choice

– merger or acquisition

– consecutive investments in different technologies

• Distribution aspects

– performance

– local autonomy

– availability

– degree of transparency 

– distributed query processing\transaction management\concurrency 
control and recovery
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Architectural Implications of Distributed Databases

• Shared memory architecture

– multiple interconnected processors that run the DBMS software 
share the same central storage and secondary storage

• Shared disk architecture

– each processor has its own central storage but shares secondary 
storage with other processors (using e.g. a SAN or NAS)

• Shared-nothing architecture

– each processor has its own central storage and hard disk units 

– data sharing occurs through the processors communicating with 
one another over the network
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Architectural Implications of Distributed Databases
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Architectural Implications of Distributed Databases

• Scalability can be achieved in 2 ways 

– capacity of nodes can be increased (vertical scalability)

– more nodes can be added (horizontal scalability)

• Notes

– parallel databases

• focus on data distribution for performance

• intra-query versus inter-query parallelism

– federated databases

• nodes in a shared-nothing architecture each run an 
independent DBMS instance with horizontal data 
fragmentation 7



Fragmentation, Allocation and Replication

• Fragmentation: partitioning of data into subsets (fragments) based on
performance, local autonomy and availability

• Vertical fragmentation
– fragment consists of subset of columns of data

– global view with JOIN query 

– useful if only some of a tuple’s attributes are relevant to a certain node

• Horizontal fragmentation (Sharding)
– fragment consists of rows that satisfy a query predicate

– global view with UNION query

– common in NoSQL databases 

• Mixed fragmentation
– combines horizontal and vertical fragmentation

– global view with JOIN + UNION query
8



Fragmentation, Allocation and Replication
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Fragmentation, Allocation and Replication
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Fragmentation, Allocation and Replication
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Fragmentation, Allocation and Replication
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Fragmentation, Allocation and Replication

• Derived fragmentation

– fragmentation criteria belong to another table

• Data replication occurs when the fragments overlap, or if 
there are multiple identical fragments allocated to 
different nodes so as to ensure

– local autonomy

– performance and scalability

– reliability and availability

• Note: replication induces additional overhead and 
complexity to keep replicas consistent! 
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Fragmentation, Allocation and Replication

• Also metadata can be distributed and replicated

• Local versus global catalog
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Transparency

• Transparency: application and users confronted 
with only a single logical database and are insulated 
from the complexities of the distribution

– extension to logical and physical data independence

• Location transparency

– users don’t know where required data resides  

• Fragmentation transparency

– users can execute global queries, without being 
concerned with the fact that distributed fragments will 
be involved, and need to be combined
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Transparency

• Replication transparency

– different replicas will be kept consistent and updates to 
one replica will be propagated transparently to others

• Access transparency

– distributed database can be accessed and queried 
uniformly, regardless of different database systems and 
APIs

• Transaction transparency

– DBMS transparently performs distributed transactions as 
if they were transactions in a standalone system
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Distributed Query Processing

• Optimizer should not only consider the 
elements of a standalone setting but also 
properties of respective fragments, 
communication costs, and location of the 
data in the network

• Also metadata may be distributed

• Both global (across all nodes) and local 
(within a single node) query optimization are 
needed
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Distributed Query Processing
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Distributed Query Processing

• Decomposition 

– query first analysed for correctness (syntax, etc.)

– query represented in relational algebra and transformed into  
canonical form 

• Data localization 

– transformation of query into a fragment query

– database fragments and locations are identified

• Global query optimization 

– cost model is used to evaluate different global strategies 

• Local query optimization

– optimal strategy for local execution
19



Distributed Query Processing

20



Distributed Query Processing

• Strategy 1 

– all tables are copied to location 3, which is also the location 
where all querying is performed  

– data transport amounts to (1000 x 84) + (3000 x 16) bytes = 
132,000 bytes

• Strategy 2

– SUPPLIER table is copied to location 2, where it is joined with 
the PURCHASEORDER table

– query result is then sent to location 3  

– data transport amounts to (1000 x 84) + (3000 x (6 + 30)) bytes = 
192,000 bytes
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Distributed Query Processing

• Strategy 3

– PURCHASEORDER table is copied to location 1, where it 
is joined with the SUPPLIER table 

– query result is sent to location 3  

– data transport amounts to (3000 x 16) bytes + (3000 x 
(6 + 30)) bytes = 156.000 bytes
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Distributed Query Processing

• Strategy 4

– use semi-join technique

– in location 2, a projection operation is executed, to yield all 
numbers of suppliers associated with a purchase order (say around 
200 supplier numbers)

– numbers are copied to location 1, where a join operation is 
executed to combine supplier numbers with names  

– intermediate result is copied to location 2 for further processing

– final result is sent to location 3

– data transport amounts to only (200 x 4) + (200 x (4 + 30)) + (3000 x 
(6 + 30)) bytes = 115.600 bytes

– Lowest network traffic but higher processing cost!
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Distributed Transaction Management and 
Concurrency Control

• Tightly versus Loosely Coupled Setting

• Primary Site and Primary Copy 2PL

• Distributed 2PL

• Two-Phase Commit Protocol (2PC)

• Optimistic Concurrency and Loosely Coupled 
Systems

• Compensation-Based Transaction Models
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Tightly versus Loosely Coupled Setting

• Global transaction coordinator versus local participants 

• Tightly coupled setting

– interdependence between participants and central control are substantial

– distributed transaction required to have ‘ACID’ properties 

– typically paired with synchronous communication 

• Loosely coupled setting

– mobile devices, web services and programming models such as .NET

– interactions based on asynchronous messaging and locally replicated data

– cached local updates only synchronized periodically with global system

– often apply some form of optimistic concurrency
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Primary Site and Primary Copy 2PL

• Primary site 2PL 

– centralized 2PL protocol in distributed environment

– single lock manager applies 2PL rules   

– lock manager informs coordinator when locks can be granted

– participant that has completed processing will notify 
coordinator who, then instructs central lock manager to 
release locks

– biggest advantage is relative simplicity (no global deadlocks!)

– lock manager may become bottleneck + no location autonomy 
and limited reliability/availability

26



Primary Site and Primary Copy 2PL

• Primary Copy 2PL

– lock managers implemented at different 
locations and maintain locking information 
pertaining to a predefined subset of the data

– requests for granting and releasing locks 
directed to the lock manager responsible for 
that subset

– impact of particular location going down will be 
less severe than with primary site 2PL

27



Distributed 2PL

• Every site has its own lock manager, which manages 
all locking data pertaining to the fragments stored on 
that site

• For global transactions that involve updates at n sites

– n locking requests 

– n confirmations about whether the locks are granted or not

– n notifications of local operations having completed 

– n requests to release the locks

• Location autonomy is respected but deadlocks may 
occur 28



Distributed 2PL

• If database has no replicated data, applying 
2PL protocol guarantees serializability

– serializable global schedule is union of local 
serializable schedules

• In case of replication, 2PL protocol must be 
extended
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Distributed 2PL
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Distributed 2PL

• 2PL can give rise to global deadlocks 

–can not be detected by local lock managers

• Deadlock detection in distributed 2PL 
requires the construction of a global 
wait-for graph

–schedule is only deadlock free if not only 
the local graphs, but also the global graph 
contains no cycles
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Distributed 2PL
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Distributed 2PL

• Example approach to detect global deadlocks

– central site maintains global wait-for graph

– all local lock managers periodically inform 
central site of changes in their local wait-for 
graphs

– if one or more cycles are detected, local lock 
managers will be informed accordingly and 
victim selection will determine which 
transaction(s) to abort and roll back
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Two-Phase Commit Protocol (2PC)

• Global transaction only attains ‘committed’ or 
‘aborted’ state if all subtransactions have attained 
same state

• Two-Phase Commit (2PC) Protocol supports 
transaction recovery in distributed environment

• Global transaction completion involves 2 steps

– voting phase: all participants ‘vote’ about transaction 
outcome 

– decision phase: transaction coordinator makes final 
decision about outcome 
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Two-Phase Commit Protocol (2PC)
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Two-Phase Commit Protocol (2PC)

• 2PC protocol supplemented by

–termination protocol: describes how to 
react to a timeout

–recovery protocol: describes how faulty 
site should correctly resume operation 
after malfunction
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Optimistic Concurrency and Loosely 
Coupled Systems

• Optimistic protocols resolve conflict before 
transaction commit, typically with abort and 
rollback of conflicting transaction

– advantageous in distributed setting

• Tightly coupled distributed systems often apply 
pessimistic concurrency protocol

– conflicting operations of other transactions postponed 
until locks released

– transactions are typically sufficiently short-lived so as 
not to hold any locks for longer periods

37



Optimistic Concurrency and Loosely 
Coupled Systems

• Loosely coupled distributed systems often apply  
optimistic concurrency protocol

– locks only held during brief period when database connection is 
open, to exchange data between the database and, e.g. an 
ADO.NET DataSet

• Example downside of optimistic concurrency 

– suppose application A1 reads data from database into a DataSet 
and then closes the database connection

– data in the disconnected dataset is updated locally

– new connection is opened to propagate to database

– no guarantee that data in the database was not altered by other 
application A2!
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Optimistic Concurrency and Loosely 
Coupled Systems

• Detecting conflicting updates in optimistic concurrency 
setting

– Timestamps

• ‘timestamp’ column added to any table that is open to 
disconnected access indicating time of most recent update

• if  A1 retrieves rows and then disconnects, timestamp column is 
copied.  

• when application attempts to propagate its updates to the 
database, the timestamp associated with updated row is 
compared to timestamp of corresponding row in database  

• if both timestamps don’t match, the update by A1 will be refused. 
Otherwise, updated row can be propagated safely and new 
timestamp value is stored.
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Optimistic Concurrency and Loosely 
Coupled Systems

• Detecting conflicting updates in an optimistic 
concurrency setting (contd.)

– store 2 versions of each row in the disconnected entity: 
‘current’ version and ‘original’ version

• default in ADO.NET DataSet

• ‘original’ version contains values read from the database

• ‘current’ version contains values affected by local updates 

• when updates are propagated to the database, for each locally 
updated row, the ‘original’ values are compared to values of the 
corresponding row in the database.  If the values are identical, 
the row is updated, otherwise, update is rejected.
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Optimistic Concurrency and Loosely 
Coupled Systems

UPDATE MYTABLE

SET column1 = @currentValue1,

column2 = @currentValue2,

column3 = @currentValue3

WHERE column1 = @originalValue1

AND column2 = @originalValue2

AND column3 = @originalValue3
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Compensation-Based Transaction Models

• Loosely coupled settings (e.g., web service 
environments) characterized by long running 
transactions 

• Example: travel agent web service

–pessimistic concurrency protocol not advised 
because locks might be held too long 

–optimistic concurrency not advised because 
coordinated rollback across participants 
infeasible
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Compensation-Based Transaction Models
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Compensation-Based Transaction Models

• Compensation-based transaction model

– undo local effects of transaction if global long running 
transaction is unsuccessful

– abandons ‘atomicity’ property of long running transaction

– local subtransactions within single participant remain 
atomic and are committed asap, without waiting for global 
commit notification

– requires each transaction participant to define its 
transaction sensitive operations in pairs, with the second 
operation specifying a new local transaction that cancels 
out the effects of the first (‘compensation’)
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Compensation-Based Transaction Models
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Compensation-Based Transaction Models

• Compensation-based transaction model (contd.)

– requires for each transaction sensitive operation Oi, a 
compensating, hand-coded operation Ci

– if global transaction that invoked Oi is aborted, Ci will 
be invoked by transaction coordinator 

– default transaction mechanism of, e.g. WS-BPEL, which 
define long running processes as orchestrations of 
individual web services

– does not guarantee transaction isolation 
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Compensation-Based Transaction Models

• Closing thoughts
• pessimistic concurrency preferable if many concurrent 

updates to same data subsets are expected, and data 
consistency is important

• optimistic concurrency and/or compensation if 
concurrent access to same data subsets is limited or if 
read operations outnumber write operations

• trade-off between consistency and performance also 
pertinent to divide between RDBMSs and NoSQL 
DBMSs
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Eventual Consistency and BASE Transactions

• Horizontal Fragmentation and Consistent Hashing 

• CAP Theorem

• BASE Transactions

• Multi-Version Concurrency Control and Vector 
Clocks

• Quorum-Based Consistency
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Horizontal Fragmentation and Consistent Hashing 

• NoSQL databases apply horizontal fragmentation 
(sharding)

• Shards allocated to different nodes in cluster with 
consistent hashing mechanism applied to data items’ key

• Sharding usually entails replication and allows for 
parallel access

• NoSQL DBMSs approach linear horizontal scalability

• Sharding and replication yields high availability  

• Not possible with traditional RDBMS and ACID 
transactions
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CAP Theorem

• Distributed system has at most 2 of 3 
properties

–Consistency: all nodes see same data, and same 
versions of these data, at the same time

–Availability: every request receives a response 
indicating success or failure

–Partition tolerance: system continues to work 
even if nodes go down or are added
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CAP Theorem

• Standalone system can provide both data 
consistency and availability with ACID transactions

• Tightly coupled distributed DBMSs often sacrifice 
availability for consistency and partition tolerance

• NoSQL DBMSs give up on consistency 

– in big data settings, unavailability is costlier than 
(temporary) data inconsistency

– overhead of locking has severe impact on performance
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CAP Theorem

• Critical Notes

– performance degradation induced by overhead of 
mechanisms that enforce transactional consistency 
under normal operation, even in absence of network 
partitions is reason to abandon perpetual consistency

– availability and performance same concepts, with 
unavailability an extreme case of high latency and low 
performance

– real trade-off is between consistency and performance
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BASE Transactions

• NoSQL DBMSs do not give up on consistency

• BASE transactions

– Basically Available: measures in place to guarantee 
availability under all circumstances, if necessary at cost 
of consistency 

– Soft State: state may evolve, even without external 
input, due to asynchronous propagation of updates 

– Eventually consistent: database will become consistent 
over time, but may not be consistent at any moment 
and especially not at transaction commit
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BASE Transactions

• Write operations performed on one or a few replicas 
of data item

• Updates to other replicas propagated 
asynchronously in background

• Read operations performed on one or few replicas

• If read of multiple replicas gives inconsistent results

– DBMS uses timestamps (e.g., ‘last write wins’) and 
returns most recent version

– applications determines how conflicting replicas are 
reconciled 54



Multi-Version Concurrency Control and Vector Clocks

• With BASE transactions, conflict resolution does not 
necessarily happen at moment of writing data but 
may be postponed until data is read

• Rather than postponing write operation, new 
version of data item is created with updated value

• DBMS may contain multiple inconsistent versions of 
a data item

– conflict resolution is postponed until data is retrieved
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Multi-Version Concurrency Control and Vector Clocks

• MVCC (Multi-Version Concurrency Control) protocol

– read operation returns one or more versions of data item; conflicts 
resolved by DBMS or application

– write operation creates new version of data item

– vector clocks used to discriminate between data item versions and 
to trace their origin

– obsolete versions of data item garbage collected

• Vector clock consists of list of [node, counter] pairs

– node refers to node that handled write of that version

– counter denotes version number of writes by that node

• Entirety of vector clocks associated with versions of data item 
represents lines of descendance of respective versions
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Multi-Version Concurrency Control and Vector Clocks

• Read operation retrieves all conflicting versions of data 
item, with the versions’ vector clocks

• Write operation creates new version of a data item with 
corresponding vector clock

• If all counters in a version’s vector clock are less-than-or-
equal-to all counters in another version’s clock, then the 
first version is an ancestor of the second one and can 
safely be garbage collected

– otherwise, both versions represent conflicting versions and 
should be retained (may be reconciled later)  
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Multi-Version Concurrency Control and Vector Clocks
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Quorum-Based Consistency

• Administrator can position NoSQL DBMS on continuum 
between high availability and permanent consistency using  
quorum-based protocol

• Quorum based protocols enforce consistency using 3 
parameters N, R and W, with R  N and W  N

– N represents number of nodes to which data item is replicated

– R is minimum number of nodes that should respond before a read 
operation can be considered as completed

– W is the minimum number of nodes that should receive updated 
value before write operation can be considered as completed
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Quorum-Based Consistency

• By manipulating R and W, administrator can decide on 
trade-off between performance and consistency , but also 
on trade-off between read and write performance 

• Configuration with R + W > N is guaranteed to provide at 
least one up to date replica with each read operation

• Configurations with R + W  N have better read and/or 
write performance, but it cannot be guaranteed that the 
result set of each read operation will contain an up to 
date replica
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Quorum-Based Consistency
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Conclusions

• Distributed Systems and Distributed Databases

• Architectural Implications of Distributed Databases

• Fragmentation, Allocation and Replication

• Transparency

• Distributed Query Processing

• Distributed Transaction Management and 
Concurrency Control

• Eventual Consistency and BASE Transactions
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