
Data Distribution and Distributed Transaction
Management

www.pdbmbook.com

http://www.pdbmbook.com/

Introduction

• Distributed Systems and Distributed Databases

• Architectural Implications of Distributed Databases

• Fragmentation, Allocation and Replication

• Transparency

• Distributed Query Processing

• Distributed Transaction Management and
Concurrency Control

• Eventual Consistency and BASE Transactions

2

Distributed Systems and Distributed Databases

• Distributed computing system consists of several processing
units (nodes) with a certain level of autonomy, which are
interconnected by a network and which cooperatively
perform complex tasks

• By dividing and distributing a complex problem into smaller,
more manageable units of work, the complexity becomes
manageable

• Distributed database systems distribute data and data
retrieval functionality over multiple data sources and/or
locations

• Goal is to provide an integrated view of the distributed data
and transparency 3

Distributed Systems and Distributed Databases

• Distributed database environment

– deliberate choice

– merger or acquisition

– consecutive investments in different technologies

• Distribution aspects

– performance

– local autonomy

– availability

– degree of transparency

– distributed query processing\transaction management\concurrency
control and recovery

4

Architectural Implications of Distributed Databases

• Shared memory architecture

– multiple interconnected processors that run the DBMS software
share the same central storage and secondary storage

• Shared disk architecture

– each processor has its own central storage but shares secondary
storage with other processors (using e.g. a SAN or NAS)

• Shared-nothing architecture

– each processor has its own central storage and hard disk units

– data sharing occurs through the processors communicating with
one another over the network

5

Architectural Implications of Distributed Databases

6

Architectural Implications of Distributed Databases

• Scalability can be achieved in 2 ways

– capacity of nodes can be increased (vertical scalability)

– more nodes can be added (horizontal scalability)

• Notes

– parallel databases

• focus on data distribution for performance

• intra-query versus inter-query parallelism

– federated databases

• nodes in a shared-nothing architecture each run an
independent DBMS instance with horizontal data
fragmentation 7

Fragmentation, Allocation and Replication

• Fragmentation: partitioning of data into subsets (fragments) based on
performance, local autonomy and availability

• Vertical fragmentation
– fragment consists of subset of columns of data

– global view with JOIN query

– useful if only some of a tuple’s attributes are relevant to a certain node

• Horizontal fragmentation (Sharding)
– fragment consists of rows that satisfy a query predicate

– global view with UNION query

– common in NoSQL databases

• Mixed fragmentation
– combines horizontal and vertical fragmentation

– global view with JOIN + UNION query
8

Fragmentation, Allocation and Replication

9

Fragmentation, Allocation and Replication

10

Fragmentation, Allocation and Replication

11

Fragmentation, Allocation and Replication

12

Fragmentation, Allocation and Replication

• Derived fragmentation

– fragmentation criteria belong to another table

• Data replication occurs when the fragments overlap, or if
there are multiple identical fragments allocated to
different nodes so as to ensure

– local autonomy

– performance and scalability

– reliability and availability

• Note: replication induces additional overhead and
complexity to keep replicas consistent!

13

Fragmentation, Allocation and Replication

• Also metadata can be distributed and replicated

• Local versus global catalog

14

Transparency

• Transparency: application and users confronted
with only a single logical database and are insulated
from the complexities of the distribution

– extension to logical and physical data independence

• Location transparency

– users don’t know where required data resides

• Fragmentation transparency

– users can execute global queries, without being
concerned with the fact that distributed fragments will
be involved, and need to be combined

15

Transparency

• Replication transparency

– different replicas will be kept consistent and updates to
one replica will be propagated transparently to others

• Access transparency

– distributed database can be accessed and queried
uniformly, regardless of different database systems and
APIs

• Transaction transparency

– DBMS transparently performs distributed transactions as
if they were transactions in a standalone system

16

Distributed Query Processing

• Optimizer should not only consider the
elements of a standalone setting but also
properties of respective fragments,
communication costs, and location of the
data in the network

• Also metadata may be distributed

• Both global (across all nodes) and local
(within a single node) query optimization are
needed

17

Distributed Query Processing

18

 query
 decomposition query in relational algebra format

 data
 localisation fragment query

 global query
 optimization globally optimized fragment query

 local query
 optimization locally optimized fragment subqueries

Distributed Query Processing

• Decomposition

– query first analysed for correctness (syntax, etc.)

– query represented in relational algebra and transformed into
canonical form

• Data localization

– transformation of query into a fragment query

– database fragments and locations are identified

• Global query optimization

– cost model is used to evaluate different global strategies

• Local query optimization

– optimal strategy for local execution
19

Distributed Query Processing

20

Distributed Query Processing

• Strategy 1

– all tables are copied to location 3, which is also the location
where all querying is performed

– data transport amounts to (1000 x 84) + (3000 x 16) bytes =
132,000 bytes

• Strategy 2

– SUPPLIER table is copied to location 2, where it is joined with
the PURCHASEORDER table

– query result is then sent to location 3

– data transport amounts to (1000 x 84) + (3000 x (6 + 30)) bytes =
192,000 bytes

21

Distributed Query Processing

• Strategy 3

– PURCHASEORDER table is copied to location 1, where it
is joined with the SUPPLIER table

– query result is sent to location 3

– data transport amounts to (3000 x 16) bytes + (3000 x
(6 + 30)) bytes = 156.000 bytes

22

Distributed Query Processing

• Strategy 4

– use semi-join technique

– in location 2, a projection operation is executed, to yield all
numbers of suppliers associated with a purchase order (say around
200 supplier numbers)

– numbers are copied to location 1, where a join operation is
executed to combine supplier numbers with names

– intermediate result is copied to location 2 for further processing

– final result is sent to location 3

– data transport amounts to only (200 x 4) + (200 x (4 + 30)) + (3000 x
(6 + 30)) bytes = 115.600 bytes

– Lowest network traffic but higher processing cost!
23

Distributed Transaction Management and
Concurrency Control

• Tightly versus Loosely Coupled Setting

• Primary Site and Primary Copy 2PL

• Distributed 2PL

• Two-Phase Commit Protocol (2PC)

• Optimistic Concurrency and Loosely Coupled
Systems

• Compensation-Based Transaction Models

24

Tightly versus Loosely Coupled Setting

• Global transaction coordinator versus local participants

• Tightly coupled setting

– interdependence between participants and central control are substantial

– distributed transaction required to have ‘ACID’ properties

– typically paired with synchronous communication

• Loosely coupled setting

– mobile devices, web services and programming models such as .NET

– interactions based on asynchronous messaging and locally replicated data

– cached local updates only synchronized periodically with global system

– often apply some form of optimistic concurrency

25

Primary Site and Primary Copy 2PL

• Primary site 2PL

– centralized 2PL protocol in distributed environment

– single lock manager applies 2PL rules

– lock manager informs coordinator when locks can be granted

– participant that has completed processing will notify
coordinator who, then instructs central lock manager to
release locks

– biggest advantage is relative simplicity (no global deadlocks!)

– lock manager may become bottleneck + no location autonomy
and limited reliability/availability

26

Primary Site and Primary Copy 2PL

• Primary Copy 2PL

– lock managers implemented at different
locations and maintain locking information
pertaining to a predefined subset of the data

– requests for granting and releasing locks
directed to the lock manager responsible for
that subset

– impact of particular location going down will be
less severe than with primary site 2PL

27

Distributed 2PL

• Every site has its own lock manager, which manages
all locking data pertaining to the fragments stored on
that site

• For global transactions that involve updates at n sites

– n locking requests

– n confirmations about whether the locks are granted or not

– n notifications of local operations having completed

– n requests to release the locks

• Location autonomy is respected but deadlocks may
occur 28

Distributed 2PL

• If database has no replicated data, applying
2PL protocol guarantees serializability

– serializable global schedule is union of local
serializable schedules

• In case of replication, 2PL protocol must be
extended

29

Distributed 2PL

30

Distributed 2PL

• 2PL can give rise to global deadlocks

–can not be detected by local lock managers

• Deadlock detection in distributed 2PL
requires the construction of a global
wait-for graph

–schedule is only deadlock free if not only
the local graphs, but also the global graph
contains no cycles

31

Distributed 2PL

32

Distributed 2PL

• Example approach to detect global deadlocks

– central site maintains global wait-for graph

– all local lock managers periodically inform
central site of changes in their local wait-for
graphs

– if one or more cycles are detected, local lock
managers will be informed accordingly and
victim selection will determine which
transaction(s) to abort and roll back

33

Two-Phase Commit Protocol (2PC)

• Global transaction only attains ‘committed’ or
‘aborted’ state if all subtransactions have attained
same state

• Two-Phase Commit (2PC) Protocol supports
transaction recovery in distributed environment

• Global transaction completion involves 2 steps

– voting phase: all participants ‘vote’ about transaction
outcome

– decision phase: transaction coordinator makes final
decision about outcome

34

Two-Phase Commit Protocol (2PC)

35

Two-Phase Commit Protocol (2PC)

• 2PC protocol supplemented by

–termination protocol: describes how to
react to a timeout

–recovery protocol: describes how faulty
site should correctly resume operation
after malfunction

36

Optimistic Concurrency and Loosely
Coupled Systems

• Optimistic protocols resolve conflict before
transaction commit, typically with abort and
rollback of conflicting transaction

– advantageous in distributed setting

• Tightly coupled distributed systems often apply
pessimistic concurrency protocol

– conflicting operations of other transactions postponed
until locks released

– transactions are typically sufficiently short-lived so as
not to hold any locks for longer periods

37

Optimistic Concurrency and Loosely
Coupled Systems

• Loosely coupled distributed systems often apply
optimistic concurrency protocol

– locks only held during brief period when database connection is
open, to exchange data between the database and, e.g. an
ADO.NET DataSet

• Example downside of optimistic concurrency

– suppose application A1 reads data from database into a DataSet
and then closes the database connection

– data in the disconnected dataset is updated locally

– new connection is opened to propagate to database

– no guarantee that data in the database was not altered by other
application A2!

38

Optimistic Concurrency and Loosely
Coupled Systems

• Detecting conflicting updates in optimistic concurrency
setting

– Timestamps

• ‘timestamp’ column added to any table that is open to
disconnected access indicating time of most recent update

• if A1 retrieves rows and then disconnects, timestamp column is
copied.

• when application attempts to propagate its updates to the
database, the timestamp associated with updated row is
compared to timestamp of corresponding row in database

• if both timestamps don’t match, the update by A1 will be refused.
Otherwise, updated row can be propagated safely and new
timestamp value is stored.

39

Optimistic Concurrency and Loosely
Coupled Systems

• Detecting conflicting updates in an optimistic
concurrency setting (contd.)

– store 2 versions of each row in the disconnected entity:
‘current’ version and ‘original’ version

• default in ADO.NET DataSet

• ‘original’ version contains values read from the database

• ‘current’ version contains values affected by local updates

• when updates are propagated to the database, for each locally
updated row, the ‘original’ values are compared to values of the
corresponding row in the database. If the values are identical,
the row is updated, otherwise, update is rejected.

40

Optimistic Concurrency and Loosely
Coupled Systems

UPDATE MYTABLE

SET column1 = @currentValue1,

column2 = @currentValue2,

column3 = @currentValue3

WHERE column1 = @originalValue1

AND column2 = @originalValue2

AND column3 = @originalValue3

41

Compensation-Based Transaction Models

• Loosely coupled settings (e.g., web service
environments) characterized by long running
transactions

• Example: travel agent web service

–pessimistic concurrency protocol not advised
because locks might be held too long

–optimistic concurrency not advised because
coordinated rollback across participants
infeasible

42

Compensation-Based Transaction Models

43

Compensation-Based Transaction Models

• Compensation-based transaction model

– undo local effects of transaction if global long running
transaction is unsuccessful

– abandons ‘atomicity’ property of long running transaction

– local subtransactions within single participant remain
atomic and are committed asap, without waiting for global
commit notification

– requires each transaction participant to define its
transaction sensitive operations in pairs, with the second
operation specifying a new local transaction that cancels
out the effects of the first (‘compensation’)

44

Compensation-Based Transaction Models

45

Compensation-Based Transaction Models

• Compensation-based transaction model (contd.)

– requires for each transaction sensitive operation Oi, a
compensating, hand-coded operation Ci

– if global transaction that invoked Oi is aborted, Ci will
be invoked by transaction coordinator

– default transaction mechanism of, e.g. WS-BPEL, which
define long running processes as orchestrations of
individual web services

– does not guarantee transaction isolation

46

Compensation-Based Transaction Models

• Closing thoughts
• pessimistic concurrency preferable if many concurrent

updates to same data subsets are expected, and data
consistency is important

• optimistic concurrency and/or compensation if
concurrent access to same data subsets is limited or if
read operations outnumber write operations

• trade-off between consistency and performance also
pertinent to divide between RDBMSs and NoSQL
DBMSs

47

Eventual Consistency and BASE Transactions

• Horizontal Fragmentation and Consistent Hashing

• CAP Theorem

• BASE Transactions

• Multi-Version Concurrency Control and Vector
Clocks

• Quorum-Based Consistency

48

Horizontal Fragmentation and Consistent Hashing

• NoSQL databases apply horizontal fragmentation
(sharding)

• Shards allocated to different nodes in cluster with
consistent hashing mechanism applied to data items’ key

• Sharding usually entails replication and allows for
parallel access

• NoSQL DBMSs approach linear horizontal scalability

• Sharding and replication yields high availability

• Not possible with traditional RDBMS and ACID
transactions

49

CAP Theorem

• Distributed system has at most 2 of 3
properties

–Consistency: all nodes see same data, and same
versions of these data, at the same time

–Availability: every request receives a response
indicating success or failure

–Partition tolerance: system continues to work
even if nodes go down or are added

50

CAP Theorem

• Standalone system can provide both data
consistency and availability with ACID transactions

• Tightly coupled distributed DBMSs often sacrifice
availability for consistency and partition tolerance

• NoSQL DBMSs give up on consistency

– in big data settings, unavailability is costlier than
(temporary) data inconsistency

– overhead of locking has severe impact on performance

51

CAP Theorem

• Critical Notes

– performance degradation induced by overhead of
mechanisms that enforce transactional consistency
under normal operation, even in absence of network
partitions is reason to abandon perpetual consistency

– availability and performance same concepts, with
unavailability an extreme case of high latency and low
performance

– real trade-off is between consistency and performance

52

BASE Transactions

• NoSQL DBMSs do not give up on consistency

• BASE transactions

– Basically Available: measures in place to guarantee
availability under all circumstances, if necessary at cost
of consistency

– Soft State: state may evolve, even without external
input, due to asynchronous propagation of updates

– Eventually consistent: database will become consistent
over time, but may not be consistent at any moment
and especially not at transaction commit

53

BASE Transactions

• Write operations performed on one or a few replicas
of data item

• Updates to other replicas propagated
asynchronously in background

• Read operations performed on one or few replicas

• If read of multiple replicas gives inconsistent results

– DBMS uses timestamps (e.g., ‘last write wins’) and
returns most recent version

– applications determines how conflicting replicas are
reconciled 54

Multi-Version Concurrency Control and Vector Clocks

• With BASE transactions, conflict resolution does not
necessarily happen at moment of writing data but
may be postponed until data is read

• Rather than postponing write operation, new
version of data item is created with updated value

• DBMS may contain multiple inconsistent versions of
a data item

– conflict resolution is postponed until data is retrieved

55

Multi-Version Concurrency Control and Vector Clocks

• MVCC (Multi-Version Concurrency Control) protocol

– read operation returns one or more versions of data item; conflicts
resolved by DBMS or application

– write operation creates new version of data item

– vector clocks used to discriminate between data item versions and
to trace their origin

– obsolete versions of data item garbage collected

• Vector clock consists of list of [node, counter] pairs

– node refers to node that handled write of that version

– counter denotes version number of writes by that node

• Entirety of vector clocks associated with versions of data item
represents lines of descendance of respective versions

56

Multi-Version Concurrency Control and Vector Clocks

• Read operation retrieves all conflicting versions of data
item, with the versions’ vector clocks

• Write operation creates new version of a data item with
corresponding vector clock

• If all counters in a version’s vector clock are less-than-or-
equal-to all counters in another version’s clock, then the
first version is an ancestor of the second one and can
safely be garbage collected

– otherwise, both versions represent conflicting versions and
should be retained (may be reconciled later)

57

Multi-Version Concurrency Control and Vector Clocks

58

Quorum-Based Consistency

• Administrator can position NoSQL DBMS on continuum
between high availability and permanent consistency using
quorum-based protocol

• Quorum based protocols enforce consistency using 3
parameters N, R and W, with R  N and W  N

– N represents number of nodes to which data item is replicated

– R is minimum number of nodes that should respond before a read
operation can be considered as completed

– W is the minimum number of nodes that should receive updated
value before write operation can be considered as completed

59

Quorum-Based Consistency

• By manipulating R and W, administrator can decide on
trade-off between performance and consistency , but also
on trade-off between read and write performance

• Configuration with R + W > N is guaranteed to provide at
least one up to date replica with each read operation

• Configurations with R + W  N have better read and/or
write performance, but it cannot be guaranteed that the
result set of each read operation will contain an up to
date replica

60

Quorum-Based Consistency

61

Conclusions

• Distributed Systems and Distributed Databases

• Architectural Implications of Distributed Databases

• Fragmentation, Allocation and Replication

• Transparency

• Distributed Query Processing

• Distributed Transaction Management and
Concurrency Control

• Eventual Consistency and BASE Transactions

62

More information?

www.pdbmbook.com 63

http://www.pdbmbook.com/

